
To model the multi-pulse dynamic spectra of GRBs, we will useLévy Adap-
tive Regression Kernel(LARK) models. These extend the IID latent process
and kernel ideas from the moving average example to the continuum. Gen-
eralizing IID, we require the latent process to have: (1) a joint distribution
for total flux in disjoint intervals to be independent; (2) the distribution to be
invariant to translation. This implies the latent process is aLévy process. An
analytical description is intricate, but there is a simple generative description
involving strewing discrete point masses in the energy-time plane. LARK
models add the kernel idea by including kernel parameters inthe “strewing,”
enabling kernel features to adjust to the data.s i t e 1s i t e 8The figure, right,
shows LARK mod-
eling of simu-
lated pollutant spatio-
temporal moni-
toring data (Clyde+

2008). Left shows
measured (points)
and true & fitted (curves) SO2 levels vs. time (hours) at 2 of 33 randomly
placed stations in a rectangular region; fits closely overlap truth for all stations.
Right shows inferred (left panel) and true (right panel) spatial distributions at
t = 36. We are adapting this approach to the GRB setting.

To model the smooth multicolor light curves of SN Ia, we will useGaussian
process (GP) priors. These extend the MVN idea from the moving average
example to the continuum, replacing the discrete covariance matrix with a
continuouscovariance function, whose amplitude and scale control the vari-
ability and smoothness of the model in a way that adapts to thedata.
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The figure at right
shows the approach at
work in the simplified
setting of single-color
light curves with no
extinction or cosmo-
logical effects. Left
panel shows twenty
simulated light curves
with a SN Ia-like stretch-brightness relation built in; colors distinguish the
sources. Middle panel shows contours of constant likelihood in the two GP
“hyperparameters” controlling variability (σ) and temporal smoothness (τ ).
Dot shows best-fit values. Right panel shows the resulting fits for the predicted
unstretched light curve that generated the data, vs. choiceof τ , illustrating
adaptivity. We are working to extend this to multicolor data, incorporating
relevant observational effects.

(FRED) pulse model with energy-dependent lag (dashed is at the nominal
energy for BATSE ch. 3 (193 keV); solid for ch. 1 (48 keV)). Thick curves
show the forward-folded signals, displaying distortions due to instrumental
effects.
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The posterior dis-
tribution is also
proportional to a
prior distribution
that uses astochas-
tic processto con-
trol the flexibility
of the model in a manner that adapts to the information in the data. The figure
at right motivates our choices via a simple moving average process in dis-
crete time. Left panel shows a latent time series ofindependent, identically
distributed(IID) samples, here standard normal. Middle panel shows aker-
nel functiondefining a moving average. Right panel shows the visible time
series from convolving the IID samples with the kernel. It issmoother than
the latent series; samples follow acorrelated multivariate normal distribution
(MVN). Our SN Ia and GRB models generalize this idea to the continuum in
two different directions.

These problems share important features:

• A dynamic spectrummust be modeled that is too complex to admit a simple
parametric description.

• Instrumental and observational effects(bandpasses; dust and extinction)
must be carefully accounted for to enable accurate inference of the intrinsic
emission.

We address these problems viasemiparamet-
ric Bayesian modeling. We calculate apos-
terior distribution for the dynamic spectrum,
specified directly and flexibly as flux or lu-
minosity vs. energy and time (with additional
finite parameters such as source redshift, lu-
minosity, or extinction coefficients). It is pro-
portional to a likelihood function (probability
for the data given the model) that accounts for instrumentaland observational
effects viaforward modeling of the data.

The figure above illustrates the importance of forward modeling for GRB
pulse modeling. Thin curves show a simulated fast rise, exponential decay

Gamma-Ray Burst Prompt Emission

Promptγ-ray and hard
X-ray emission from
GRBs provides a win-
dow into the still-
puzzling GRB central
engine. Also, it can
be seen from very
high redshift, mak-
ing GRBs promising
cosmological probes.
The blue light curves (binned counts vs. time) display some of the diversity of
GRB prompt emission; there are typicallymany diverse pulses(often overlap-
ping), with a possible smooth component. The right curves show pulse fits to
#3480 (Hakkila+ 2008); such fits quantify the diversity of energy-dependent
pulse structureswithin a single burst(e.g., low energy lags high by times vary-
ing from ms to seconds). Current methods cannot fit crowded pulses and do
not fully account for instrumental effects.

Type Ia Supernova Light Curves

The figure (from Jha,
Riess & Kirshner 2007)
shows simultaneous fits
to SN Ia multicolor
light curves (magni-
tude vs. time). The
amplitudes are not free
parameters; they are
inferred from how the
shapes (time scales)
of the curves compare
to a model trained on
nearby SNe with known luminosities. This kind of modelcalibrates SN Ia
luminositiesenabling them to be used as distance indicators; this underpinned
the discovery ofdark energy. Systematic errors in current methods are much
too large to enable accurate measurement of the dark energy equation of state
with future surveys (e.g., usingJDEM).

The prompt emission from a gamma-ray burst (GRB) showers instruments with an extremely complex rain of hard X-ray and gamma-ray photons,
varying wildly in rate and energy over time scales of milliseconds to hours. The months-long rise and decline of emissionfrom a Type Ia supernova
(SN Ia) presents telescopes with a complex, time-varying spectrum whose detailed behavior encodes information about its intrinsic luminosity,
enabling use of SN Ia as cosmological distance indicators. What these two classes of sources have in common is that essential physics is hidden
in a dynamical spectrum, an increasingly important astrophysical data type. We describe a project, newly-supported bythe AISR program,
developing new methods for analyzing complex dynamic spectra using semiparametric Bayesian models that describe the time-energy behavior
as a two-dimensional stochastic process. We will analyze GRB emission using Ĺevy adaptive regression kernel models, which are well-suited
to modeling signals resembling superpositions of many overlapping pulses with a spectrum of properties. For SN Ia, we will use multivariate
Gaussian processes to analyze multicolor light curves; these are well-suited to modeling signals with smooth variation on a variety of scales. We
describe properties of the models, and the impact successful modeling will provide on our understanding GRB physics andour ability to use SN
Ia for precision cosmology.
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